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Abstract 

Breast cancer is the most prevalent cancer in women globally. More than 2.26 million new cases 

of breast cancer have been recorded worldwide, and it is a significant cause of cancer-related 

deaths (World Cancer Research Fund International, 2020). Computer aided detection has shown 

promising results in accurate classification of malignant and benign tumors on breast 

ultrasound. This study aimed to apply the HoVer-Trans model to the Mayo Clinic breast 

ultrasound data and to test the model results compared to Jarvey (2022) and Mo et al. (2022). 

The results showed that the HoVer-Trans model demonstrated greater AUC, which could 

correctly classify breast lesions as benign or malignant. However, it under-performed in 

sensitivity compared to a radiologist’s results (Jarvey, 2022). Improved model optimization of 

the HoVer-Trans model could produce more precise and accurate results than this study's results. 

Future research on AI in breast cancer diagnosis using machine learning enhances early 

detection, and rapid intervention for breast cancer is essential for patient care and optimal 

outcomes. Machine learning and AI can contribute significantly to diagnostic medicine in terms 

of breast cancer. 
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Chapter 1:  Introduction 

Breast cancer is the most prevalent cancer in women globally. More than 2.26 million 

new cases of breast cancer have been recorded worldwide, and it is a significant cause of cancer-

related deaths (World Cancer Research Fund International, 2020). Breast cancer remains a 

significant health issue in the United States, with 310,720 new cases of invasive breast cancer 

predicted for 2024 (BreastCancer.org, 2024), which increased from 2023 from 297,790 women 

(Cancer.net, 2024). According to the National Breast Cancer Foundation (2023), 1 in 8 women in 

the United States was diagnosed with breast cancer, which showed up to 27% mortality in 

women aged 60 years and older (American Cancer Society, 2024).   

Breast ultrasound evaluation is the current state-of-the-science medical diagnostic and 

screening tool for breast cancer. Traditionally, ultrasound images are read by a radiologist who 

determines whether a breast lesion is benign or malignant. There are five levels of 

characterization of breast tissue. There are normal, superficial cystic lesions, complex cystic 

lesions, indeterminate cystic or solid lesions, and solid lesions. They began with a level 2 lesion 

(superficial cystic lesion), as well as a description and classification of risk related to whether or 

not the tumor is malignant. These are called BIRADS (breast imaging reporting and data system) 

(Stavros, 2004). Before the availability of AI assistance, the only way to definitively know if a 

lesion was benign or malignant was to biopsy it. The biopsy procedure may or may not be 

scheduled on the same day as the ultrasound. It is also costly and invasive. With AI tools, breast 

ultrasound images can be classified, and predictive analytics can be used to distinguish between 

benign and malignant tumors. This emerging technology promises to improve the accuracy and 

speed at which malignant tumors are identified.  
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AI used for breast cancer lesion detection and classification emerged around 2020. Early 

studies showed that AI was useful but had challenges, including the lack of access to data and 

bias. Furthermore, fear around the concept of AI that humans will lose control over technology 

also creates challenges for introducing AI into the healthcare arena (Abdul-Halim et al., 2021). 

Currently, there is ongoing research to validate the use of AI in breast cancer diagnosis, and as 

data becomes more readily available, testing and training these models could yield viable options 

for painful and invasive procedures.  

A collaboration between the University of Wisconsin-La Crosse and the Mayo Clinic 

Health Systems attempted to use deep learning to rapidly and accurately diagnose breast cancer 

tumors detected by ultrasound. The introduction of the HoVer-Trans model to the Mayo Clinic's 

extensive database of 109,188 ultrasound images marked a significant advancement in breast 

cancer diagnosis. The HoVer-Trans model, known for its anatomy-aware capabilities and not 

requiring predefined regions of interest (ROI) for diagnosis, offered a promising alternative to 

traditional convolutional neural network (CNN) methods. While effective, these conventional 

methods often need more interpretability, which is crucial for clinical application. This project 

aimed to leverage the unique features of the HoVer-Trans model to improve both the accuracy 

and interpretability of breast cancer diagnosis. 

Statement of the Problem 

AI technologies like natural language processes and machine learning are emerging as 

tools to begin structuring the vast amount of unstructured data in healthcare (Horowitz, 2023), 

including medical images. In addition, current medical diagnostic technologies are expensive and 

increase medical costs. Access to diagnostic technologies may be difficult (Johnson, 2023). 
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Furthermore, accuracy in traditional diagnostic methods can be limited. Innovation in healthcare 

diagnostic tools using AI and predictive analytics will improve accuracy, particularly with 

advanced imaging (StartUS Insights, 2023). 

Related to medical imaging, AI technologies, specifically deep learning methods, 

improved traditional methods in that AI can significantly reduce the time required to diagnose 

diseases. Models can remove the subjectivity that humans introduce in evaluating images and 

making final diagnoses (Eustaqui et al., 2023). It is also important to note that reproducibility in 

medical imaging is greatly improved with the use of AI. Human interpretation often leads to 

variability in inter-rater observations because practitioners may interpret the same images 

differently. AI removes the variability, allowing for a more accurate result (Eustaqui et al., 2023).  

The current state of using AI and predictive analytics needs to be improved. The main 

problem is the need for extensive data sets to train the AI models, refine them for accuracy 

(Zhang & Qie, 2023), and use them more efficiently.  

As noted above, traditional methods for breast cancer diagnosis using ultrasound imaging 

were effective to a certain extent but often fell short in terms of interpretability and efficiency. 

The Mayo Clinic has pioneered more effective methods using AI and predictive analytics. To 

date, the Mayo Clinic has used Convolutional Neural Networks (CNN) to determine if breast 

lesions discovered by ultrasound were benign or malignant. One of the problems encountered by 

using CNN was that the level of accuracy needed to be in the 70th percentile. The region of 

interest (ROI) was not interpretable using the CNN. 
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Theoretical Framework 

This study was based on the functionality of an anatomically aware HoVer-Trans model. 

The HoVer-Trans model represented a cutting-edge approach in medical image analysis, focusing 

on the anatomy-aware segmentation and classification of images without the need for manually 

defined ROIs. This project explored the application of this model to a vast and varied dataset, 

pushing the boundaries of what was possible with current technology. 

Mo et al. initially developed the HoVer-Trans model for breast cancer diagnosis (2022).  

Mo et al. (2022) proposed that malignant and benign tumors rested in different tissue layers and 

had other spatial relationships. The HoVer-Trans model could extract information vertically and 

horizontally, allowing for more accurate breast cancer tumor ultrasound interpretation. This was 

because benign tumors tended to follow a horizontal line and stay in the epithelial tissues. 

Malignant tumors grew to follow a vertical line from the glandular tissue into deeper tissue. Mo 

et al. (2022) found that their model outperformed two senior sonographers on breast cancer 

diagnosis in both BI-RADS and binary malignant/benign conclusions. 

Statement of Purpose 

The purpose of this study was to evaluate the effectiveness of the HoVer-Trans model on 

the Mayo Clinic's ultrasound image database, aiming to improve the interpretability and accuracy 

of a breast cancer diagnosis. By providing a model that required minimal human intervention for 

accurate malignancy prediction, this research could significantly impact the field of computer-

aided detection (CAD). 

The HoVer-Trans model allowed for the visualization of tumors within the images and for 

the accurate identification of malignant tumors. The Mayo Clinic's database presented an 
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opportunity to apply the HoVer-Trans model's advanced capabilities to a real-world setting, 

potentially setting a new standard for diagnostic accuracy and usefulness in clinical practice. 

Objectives 

This study addressed the accuracy of the HoVer-Trans model in diagnosing breast cancer, 

its interpretability in clinical settings, and its performance compared to other models that used 

weakly supervised approaches. It aimed to provide an enhanced diagnostic tool for developing 

CAD systems. The objectives of this project were: 

• Improved model statistics compared to Jarvey (2022). 

• The development of an improved HoVer-Trans model that could accurately classify 

breast tissue lesions as benign or malignant.  

• A substantial contribution to the field of medical imaging and cancer diagnosis was 

made, potentially leading to early detection and treatment of breast cancer. 

Significance of the Study 

This study sought a more accurate, interpretable, and efficient method for diagnosing 

breast cancer by applying the HoVer-Trans model to the Mayo Clinic's comprehensive database. 

This could greatly benefit the healthcare industry by improving patient outcomes and 

streamlining the diagnostic process. 

Definitions of Terms 

Terms used included:  

• “HoVer-Trans”:  A transformer method to preserve Region of Interest 

• "Convolutional Neural Network” (CNN): A regularized type of feed-forward neural 

network that learns feature engineering by itself via filters 
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• "Region of interest” (ROI): A sample within a data set identified for a particular 

purpose. 

• “Computer Assisted Diagnosis” (CAD ): A broad concept that integrates image 

processing, machine learning/deep learning, computer vision, mathematics, physics, 

and statistics into computerized techniques that assist radiologists in their medical 

decision-making processes. 

Conclusion 

In summary, early detection of malignant breast lesions is essential to successful 

treatment. Current methods of early detection using CNNs showed moderate success. However, 

Mo et al. (2022) suggested that the HoVer-Trans model would yield a higher accuracy percentile. 

Therefore, this study will apply the HoVer-Trans model to the Mayo data to test the process of 

Mo et al. (2022) to increase the accuracy percentile.  
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Chapter 2: Review of the Literature 

According to the National Breast Cancer Foundation (2023), 1 in 8 women in the United 

States were diagnosed with breast cancer. Early detection was essential for rapid detection and 

treatment. Breast cancer has been recognized as a significant global health issue that calls for the 

advancement of new diagnostic methods to achieve medical treatment that is timely and 

effective. Ultrasound mammography is the most widely used diagnostic because it is affordable 

and accessible to most women. It remains an essential component of methods for diagnosing 

breast cancer. Despite these advantages, the challenge of interpreting ultrasonography accurately 

posed a severe barrier in that it depended on humans. Therefore, the creation of advanced 

computational models that could accurately diagnose patients was the most logical step in the 

advancement of diagnosing breast cancer.  This literature review will include enhanced methods 

for breast cancer diagnosis, emerging techniques and their impacts, and advanced AI applications 

in breast cancer management.  

Enhanced Methods for Breast Cancer Diagnosis 

Artificial intelligence and recent advancements in medical imaging have greatly 

improved the accuracy and effectiveness of breast cancer diagnosis. One recent development was 

the use of vision transformers for mammography classification. Ayana et al. (2023) stated that 

these models' successful use of transfer learning techniques has allowed them to distinguish 

between benign and malignant tissues with high diagnostic accuracy.  

 Xie et al. (2022) also provided evidence of enhanced detection abilities and reduced false 

positive rates by integrating AI with traditional imaging methods. In addition, Zhang et al. (2021) 
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addressed the practical challenges posed by AI applications in breast imaging, such as dataset 

variability and model generalizability, and proposed solutions to address these issues. 

Comparative studies, such as one conducted by Li et al. (2023), showed the benefits of 

combining different machine-learning models. When combined, they demonstrated increased 

predictive accuracy of breast cancer diagnoses. Patel et al. (2022) researched the combined use 

of MRI and ultrasound data in 2022. When processed by sophisticated AI algorithms, the data 

helped to detect breast cancer at an earlier stage and with greater accuracy.  

Emerging Techniques and Their Impacts 

The advancement of artificial intelligence along with breast imaging has led to the 

development of new techniques and improved capabilities of traditional methods, resulting in a 

shift in the methods used to diagnose breast cancer. Wang et al. (2022)  provided a thorough 

analysis of several cutting-edge AI-driven imaging technologies that enhanced diagnostic clarity 

and accuracy. These are two crucial factors that are critical for spotting subtle abnormalities at an 

early stage. More opportunities to improve diagnostic accuracy were created by combining 

different types of neural networks.  Chen et al. (2023) demonstrated how hybrid models that use 

both CNNs and RNNs can process complex imaging data efficiently, improving detection rates 

and diagnostic reliability.  Gupta et al. (2021) studied how the development of mammography 

has been enhanced by deep learning. They described advancements in AI applications that 

significantly improved the accuracy of mammogram interpretation. This advancement has 

proven crucial in ensuring prompt diagnosis and effective patient care. Also, a critical study 

conducted in Sweden found that AI used in screenings found 20% more cancers. The number of 
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false positives was not increased, meaning the AI did not incorrectly diagnose breast lesions as 

abnormal (Knoll, 2023). 

An essential aspect of patient care is individualization due to differences in physiology 

among patients and different types of breast lesions. Torres et al. (2022) showed how artificial 

intelligence (AI) can be used to personalize patient care and talked about using machine learning 

to predict breast cancer recurrence. Conducting individual risk assessments using AI has made it 

easier to identify problems early and individualize follow-up therapies and interventions.  

A significant development in breast cancer detection is improved noninvasive screening 

techniques to reduce unnecessary invasive methods such as biopsies. Kim et al. (2023) 

demonstrated the advancements in noninvasive screening techniques. These additional 

techniques have the potential to significantly reduce the invasiveness of traditional diagnostic 

procedures and reduce medical costs. More importantly, such methods could facilitate more 

comprehensive and easy early detection and monitoring of breast cancer.  

Advanced AI Applications in Breast Cancer Management 

Precision medicine has entered a new era in oncology with artificial intelligence in breast 

cancer diagnosis and therapy. In addition, AI applications have been developed to assist in 

appropriate breast cancer management. Based on the work by Smith et al. (2022), the method by 

which cancer prognosis is approached has drastically changed due to the ability of AI to analyze 

large datasets and produce highly accurate patient outcome predictions. Narvaez et al. (2021) 

studied the impact of AI on breast cancer screening and diagnosis in 2021. They demonstrated 

how artificial intelligence (AI) has increased detection rates and diagnostic accuracy, potentially 
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reducing healthcare disparities by providing reliable diagnostic assistance across various 

healthcare environments.   

Lee et al. (2023) revealed the anticipated advancements in individualized cancer 

treatment. Treatment and diagnostic plans could be precisely tailored for every patient thanks to 

these advancements, increasing the likelihood of successful interventions specific to types of 

breast cancer.  

In terms of AI technologies, the role of deep learning in detecting breast cancer, as 

explored by Morrison et al. (2022), is a critical advancement. Their methods effectively identify 

intricate patterns in imaging data, identifying early warning signs of breast cancer. Furthermore, 

Hayes et al. (2021) discussed using computer vision technologies to identify breast cancer. For 

early intervention and treatment planning, improved interpretation of imaging results translates 

into quicker processing times and more accurate diagnosis.  

The Future of Breast Cancer Diagnostics and Treatment 

The field of diagnosing and treating breast cancer is evolving quickly thanks to the 

advent of cutting-edge computational technologies. O’Connor et al. (2023) demonstrated how 

machine learning can significantly enhance early detection of breast cancer, which is crucial for 

increasing the chance of a successful treatment plan and survival.  

Machine learning is altering individual therapy techniques. Treatment plans will be 

tailored to each individual based on detailed analyses of each patient's genetic data and illness 

trajectory. The machine learning approach maximizes the effectiveness of treatment while 

minimizing unnecessary side effects (Simmons et al., 2022).  



18

 Thompson et al. (2021) studied computational techniques to help predict 

treatment outcomes. Their research demonstrates how using predictive models in treatment 

decisions leads to developing more specialized and effective therapeutic interventions. Fischer et 

al. (2023) showed how artificial intelligence is speeding up research to enable the prompt 

identification and validation of new therapeutic targets, which could result in revolutionary 

treatments. Lastly, Jenkins et al. (2022) clarified how data-driven methodologies are 

transforming the field of breast cancer.  

Previous Capstone Projects 

Over the last three years, the Mayo Clinic and the University of Wisconsin-La Crosse 

have studied the methodologies for detecting and classifying breast tumors using ultrasound 

images with traditional imaging techniques, basic CAD systems, and neural networks using deep 

learning techniques. These were the basis for capstone projects at the University of Wisconsin. 

This section briefly describes six of the projects evaluated as part of the background research for 

this current project.  

Mohan (2022), Hall (2021), and Andrei (2022) each completed a capstone project 

researching CNNs and U-Net architectures. These systems demonstrated higher accuracy, 

precision, and recall rates than traditional models. Bodart (2022) completed a capstone project 

which focused on medical practitioners. Bodart’s work helped make AI tools more 

understandable and transparent to physicians and radiologists, thereby gaining the practitioners' 

trust so they were more apt to use the tools. Silberfin (2021) developed workflows that integrated 

computer-aided detection to improve accuracy and efficiency in breast cancer diagnosis. Finally, 
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Jarvey (2022) designed a computer-aided detection program that used machine-learning 

algorithms to improve the detection and characterization of lesions. 

Medical Image Analysis with ViT 

The broader use of vision transformers in medical image analysis was investigated by 

Azad et al. (2023) in a groundbreaking study emphasizing their performance and adaptability in 

a range of medical imaging contexts, including ultrasound images used to diagnose breast cancer. 

A thorough description of the architecture of vision transformers emphasized the self-attention 

mechanism that made it possible to comprehend relationships and spatial hierarchies in medical 

images sophisticatedly. Azad et al. (2023) argued that by providing improved model 

interpretability and the capacity to identify long-range dependencies in pictures, data vision 

transformers markedly deviated from conventional convolutional neural networks (CNNs) (Azad 

et al., 2023).  

HoVer-Trans Model 

A groundbreaking study recognized the HoVer-Trans model as a breakthrough in the field 

(Mo et al., 2022). This model adopted a novel approach to enhance ultrasound image diagnostic 

accuracy without requiring previously defined regions of interest (ROI) by utilizing the 

anatomical differences between benign and malignant tumors. The model incorporates an 

innovative HoVer-Transformer block that improves the performance and interpretability of breast 

cancer diagnostics by extracting and analyzing spatial data in both horizontal and vertical 

dimensions. Given that the HoVer-Trans model outperforms traditional CNN architectures and 

that competent sonographers can make significant progress in diagnosis, ultrasound-based breast 

cancer detection advancements have been made. (Mo et al., 2022).  
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BreastUS Transformer model 

The BreastUS Transformer model was presented in 2022 and automatically classified 

breast ultrasound images into three categories: benign, malignant, and normal (Saad et al., 2022). 

Compared to state-of-the-art CNN models, integrating self-attention mechanisms yielded 

significantly better diagnostic accuracy and performance metrics. This breakthrough highlighted 

the revolutionary possibilities of transformer models in medical image analysis.  

VGG16 Model 

Hossain et al. (2023) demonstrated how well a VGG16 model-based transfer learning 

technique worked for identifying breast cancer from ultrasound pictures. The method utilized a 

customized deep neural network for classification and a median filter to improve image quality 

via despeckling. It produced notable gains in accuracy and computational efficiency. This study 

provided insights into the benefits and practical applications of transfer learning and deep 

learning methodologies, highlighting their promising potential in improving breast cancer 

diagnostic procedures.  

Conclusion 

The collective results of these studies highlighted a significant evolution in the ultrasound 

imaging-based breast cancer diagnosis methodologies. To improve diagnostic accuracy, reduce 

reliance on human ROI identification, and increase access to advanced diagnostic tools in 

various healthcare settings, computational models such as the HoVer-Trans and BreastUS 

heralded a paradigm-shifting era in the application of artificial intelligence in medical 

diagnostics. By integrating these sophisticated computational models into routine clinical 

procedures, the early diagnosis and treatment of breast cancer may be transformed, ultimately 
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leading to better patient outcomes. This literature review examined the HoVer-Trans model and 

vision transformers to identify and classify breast cancer tumors. This highlighted essential 

developments in medical imaging and diagnostics. The joint efforts and results of  Mo et al. 

(2022), Saad et al. (2022), and Hossain et al. (2023), in addition to the theoretical insights 

provided by Azad et al. (2023), demonstrated the revolutionary potential of combining advanced 

computational models and AI technologies in the field of breast cancer detection and diagnosis. 

The HoVer-Trans model became a game-changer employing anatomical knowledge and state-of-

the-art transformer technology to improve the precision and clarity of diagnosis obtained from 

ultrasound images without needing preset regions of interest. Similarly, the novel BreastUS 

model and the use of transfer learning through the VGG16 model further demonstrated the 

ability of deep learning and machine learning methods to improve the precision and effectiveness 

of diagnosis. These approaches presented a severe challenge to the knowledge of seasoned 

medical professionals while also being a significant advancement over conventional diagnostic 

techniques.  

Demonstrating the wide range of applications for these tools in medical image analysis 

outside of breast cancer diagnosis broadened the horizons of these technological advancements. 

Diagnostic accuracy, efficiency, and scalability were enhanced across a wide range of medical 

conditions and imaging techniques by the innate ability of vision transformers to identify 

complex spatial relationships and patterns within medical imagery. The fight against breast 

cancer entered a new phase with the promise of earlier detection, more accurate diagnoses, and 

customized treatment plans brought about by these technological advancements. Nevertheless, 

ongoing research, interdisciplinary cooperation, and careful handling of implementation ethical 
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and privacy concerns were necessary to integrate these technologies into clinical settings 

effectively. In conclusion, the knowledge gained from these investigations is a significant basis 

for upcoming innovation. The development and application of artificial intelligence (AI) and 

machine learning technologies have great potential to improve patient outcomes and transform 

the field of medical diagnosis and treatment planning.  Precision medicine and patient care have 

entered a new era thanks to these technologies' continuous development and application, 

improving the ability to detect, diagnose, and treat diseases like breast cancer. 
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Chapter 3: Research Method HoVer-Trans Model  

A prompt and accurate diagnosis is essential for the effective management of breast 

cancer. Mo et al. (2022) proposed the HoVer-Trans model. They provided a fully automatic 

technique for utilizing ultrasound pictures to diagnose breast cancer. This model identified the 

breasts’ anatomical structures by considering the spatial relationships between tumors and 

anatomical layers. Utilizing intra- and inter-layer spatial correlations, its anatomy-aware 

formulation enhanced the representation of spatial relationships. The improved representation of 

spatial relationships between layers in the HoVer-Trans led to its superior performance in 

ultrasound images compared to previous algorithms. The transformer model was enhanced by 

integrating anatomical prior knowledge via patch horizontal and vertical embedding. During the 

HoVer-Trans stage, the relationships between the intra- and inter-layer anatomical layers of the 

breast were determined by four branches. Convolutional blocks add inductive bias and link two 

adjacent stages, increasing the model's diagnostic precision for breast cancer. (Mo et al., 2022).  

The HoVer-Trans model that has been proposed is exceptionally efficient and accurate, 

and it has the potential to revolutionize the diagnosis of breast cancer and improve outcomes for 

patients. Figure 1 compares various models tested by Mo et al. (2022) on three different 

databases, which aided in determining which model to use. The current project used the 

GDPH&SYSUCC database, and as noted by Mo et al. (2022), the HoVer-Trans model (signified 

as “Ours” in Figure 1) performed the best. Other models with good results, such as the VGG16, 

were rejected because they were not anatomically aware.  
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Figure 1  

Comparison of Models in 3 Databases (Mo et al., 2022)  

 

Therefore, this project utilized the Hover-Trans model, detailing its application in 

discerning malignant and benign tumors in breast tissue. As ultrasound images were analyzed, 

the anatomical structures of the breast were visually discernible. Unlike benign tumors, 

malignant tumors displayed distinct spatial relationships with various anatomical layers, 

including the fat, gland, muscle, and thorax layers. A completely automated model for 

diagnosing breast cancer was proposed as a result of this prior knowledge. The capacity to 

identify breast cancer is a feature of this model. This section presents the methodology of the 

proposed model, as illustrated in Figure 2.  
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Figure 2  

HoVer-Trans Network Diagram  

The proposed model has four stages in its network architecture: a convolutional block, a 

flattening operation of multiple HoVer-Trans blocks, and a pooling layer (2022) in each stage. 

There are three types of embedding techniques: patch embedding, vertical strip embedding, and 

horizontal strip embedding. HoVer-Trans uses breast ultrasonography images to generate 

anatomical prior knowledge, which makes it possible to extract the relationships between and 

within the different anatomical layers of the breast. It was divided into four branches. The 
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horizontal and vertical branches, respectively, were aimed at the extraction of the intra-layer and 

inter-layer relationships. The introduction of H2V and V2H branches combined the horizontal 

and vertical features. The output features from every branch in the preceding HoVer-Trans block 

were the input features for the following HoVer-Trans block. The convolution block links two 

nearby stages and adds inductive bias.  As seen in Figure 3, the ultrasonography pictures display 

distinct layers of various breast tissues and highlight the distinctions between benign vs. 

malignant growths. This was accomplished by utilizing the breasts’ anatomical structure and the 

concepts of ultrasound imaging. The lesion’s size, location, morphological appearance, and 

spatial relationship with the different layers contributed to its malignancy.  

Figure 3  

Breast Ultrasound  

Conventional convolutional neural network models effectively extracted representative 

local features but required the ability to represent spatial relationships effectively. Because of 

this, most of the breast cancer diagnosis algorithms in ultrasound images required a pre-defined 

region of interest (ROI) of the lesion to eliminate redundant areas and allowed the CNN model to 
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classify the ROI. It is clear from Figure 4(a) that the self-attention nature of the transformer 

resulted in the introduction of spatially solid relationships between each visual word. The 

problem was formulated by transforming the square-shaped visual words into horizontal and 

vertical strips to bring the anatomical prior knowledge into the model, as shown in Figure 4(b) 

(Mo et al., 2022). This allowed further exploitation of the intra-layer and inter-layer spatial 

correlations in Breast Ultrasound (BUS) images.  

Figure 4  

Transformer Results  

The vision transformer (ViT) (Dosovitskiy et al., 2021) was the first technique to 

integrate the most widely used method in natural language processing into computer vision. It 

transforms input images into patches that are considered visual words.  
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As the input image was transformed into patches, it considered these patches the visual 

words (tokens), where the height (H), width (W), and column (C) were the set of elements.  

Figure 2 also illustrates the general framework of the model in its entirety. The structure 

was made up of four different stage modules. Several HoVer-Trans blocks, one Conv block, and 

one pooling layer were the components that make up each stage module. A convolutional stem 

was applied to a BUS image I ∈ RHxWx3 space for early visual processing. In contrast to the 

patchy stem of the original ViT, introducing early inductive bias through an early convolutional 

stem (Xiao et al., 2021) enhanced both the optimization stability and the model's performance. 

These sizes were comparable to the structure of the conventional convolutional neural network 

(He et al., 2016; Simonyan et al., 2015). It was necessary to introduce a Conv block to connect 

two adjacent stages to combine the horizontal and vertical information. The input for each stage 

was a two-dimensional image or a two-dimensional feature map. To fit the transformer's input, 

embedding or flattening was implemented. Finally, the fully connected layer was utilized for 

inference in the final stage. Through the use of cross-entropy loss, the model was optimized (Mo 

et al., 2022).  

Implementation  

Data, including 109,188 images, was received from the Mayo Clinic. A dedicated 

radiologist worked with the University of Wisconsin-La Crosse to prepare the images for 

processing. To date, 9,072 images have been biopsied and interpreted that contained purely 

malignant or purely benign images. The university team focused on using a multi-instance 

learning (MIL) model as most data needed to be interpreted, and most lesions have multiple 

images. Obtaining training data was problematic, and previous neural network models provided 
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accuracies in the 70 - 80% range. Figure 5 (Poofy1, 2023) illustrates the process used to prepare 

the data. The author’s task was to provide the core image location and lesion identification to 

augment the MIL model.  

Figure 5  

Mayo Data Pipeline  
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Python 3.6 and PyTorch 1.8 were used to implement the model. Four NVIDIA GeForce 

RTX 2080Ti GPUs with 11 gigabytes of memory each were used for every experiment. The 

embedding dimensions of each stage were {4, 8, 16, 32}, and the HoVer-Trans block numbers of 

each stage were {2, 4, 4, 2}. The model was constructed with these embedding dimensions. Two, 

four, eight, and sixteen were the head numbers of the transformer block in each stage. With a 

batch size of 64, a weight decay of 0.1, 10 warmup epochs, and an initial learning rate of 0.0001 

using a cosine decay learning rate scheduler, the model was trained for 250 epochs using the 

AdamW optimizer (Kingma et al., 2014). Finally, a 5-fold cross-validation was used to evaluate 

the model on a limited data sample.  

Additionally, blurring, noise, horizontal flipping, brightness, and contrast are all 

components of the augmentation strategy. Because the order of the tissue layers is 

predetermined, vertical flip data augmentation was not implemented. Every image was resized to 

256 pixels by 256 pixels before processing.  

Conclusion  

In conclusion, the research conducted by the author at the University of Wisconsin-La 

Crosse presented a significant advancement in medical imaging and breast cancer diagnosis 

through the innovative use of the HoVer-Trans model. Building on the foundational concepts 

introduced by Mo et al. (2022), this model employs a unique approach by integrating anatomy 

awareness into the transformer architecture, thus enhancing the accuracy of breast cancer 

diagnosis using ultrasound images. By effectively leveraging the spatial relationships between 

tumors and anatomical layers and incorporating advanced AI techniques such as patch,  
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horizontal and vertical embedding, and a convolutional block, the HoVer-Trans model sets a new 

standard in the precision and reliability of breast cancer detection.  

The study demonstrated the technical capabilities and effectiveness of the HoVer-Trans 

model and emphasized the potential impact of integrating such advanced technologies into 

clinical practice. As exemplified by this research, adopting vision transformers in medical 

diagnostics offers the promise of more accurate, efficient, and accessible cancer diagnostics, 

which is crucial for timely treatment and improved patient outcomes. Furthermore, the study 

acknowledges the importance of ethical considerations in deploying AI technologies in 

healthcare, advocating for a balanced approach that maximizes benefits while addressing 

potential biases and equity issues.  

As breast cancer remains a significant health challenge worldwide, this research's 

contributions are timely and valuable. They underscore the importance of interdisciplinary 

collaboration between AI research and clinical practice to drive innovations that can significantly 

enhance cancer diagnosis and treatment. The promising results obtained from the Mayo Clinic 

datasets suggest that further exploration and validation of the HoVer-Trans model in broader 

clinical settings could lead to its adoption as a standard tool in breast cancer diagnosis, ultimately 

contributing to the global effort to combat this disease. A link to the Python code and Jupyter 

Notebook can be found in Appendix A. 
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Chapter 4:  Presentation of Research 

Introduction 

This chapter presents the findings of the HoVer-Trans Model application to the Mayo 

data. The methodology is discussed in the previous chapter. The HoVer-Trans model consisted of 

9072 images representing 1526 patients. Specifically, there were images of 4537 right breasts 

and 4492 left breasts.  

As a reminder, it is essential to produce accurate and timely results concerning breast 

cancer diagnoses. Inaccurate diagnoses and missed malignant lesions can have life-altering 

effects on individuals. The main point of interest is the model’s ability to classify malignant and 

benign tumors accurately and consistently. In addition, the objectives of this project were: 

• Improved model statistics compared to the existing Mayo studies (Jarvey, 2022). 

• Improved model statistics compared to Mayo Radiologists. 

• The development of an improved HoVer-Trans model that could accurately classify 

breast tissue lesions as benign or malignant. 

• Various breast ultrasound images showed enhanced sensitivity and specificity in 

detecting malignancies. 

• A substantial contribution to the field of medical imaging and cancer diagnosis was 

made, potentially leading to early detection and treatment of breast cancer. 

The HoVer-Trans model is optimized by cross-entropy loss. Each of the five folds ran 

250 epochs, and graphs were produced to evaluate changes in the key AUC-ROC statistics 

throughout the process. The results were as follows: 
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AUC 

The Receiver Operator Characteristic (ROC) curve is an assessment metric for binary 

classification issues. A probability curve distinguishes the signal from the noise by plotting the 

sensitivity or True Positive Rate (TPR) (also called Recall) against one minus specificity or False 

Positive Rate (FPR) at different threshold values. Stated differently, it presents a classification 

model's performance across all classification thresholds. AUC, a summary of the ROC curve, 

measures a binary classifier’s capacity to discriminate between classes. The models’ ability to 

distinguish between the positive and negative classes is improved with a higher AUC. The 

likelihood that the classifier will be able to differentiate between positive and negative class 

values is high when the AUC is between .5 and 1. This is because there are more True positives 

and True negatives that the classifier can identify than False positives and False negatives. The 

classifier cannot distinguish positive and negative class points when AUC is .5. This indicates 

that the classifier predicts a constant or random class for every data point.  

AUC is helpful in many areas, including credit scoring, medical diagnosis, and machine 

learning. It is best when: 

• False positive and false negative costs are highly dissimilar.  

• There is an uneven distribution of classes.  

• A single metric is needed to compare the performance of various models. 

Although AUC offers a cohesive perspective on model performance, it does not indicate 

the choice threshold or provide information regarding model calibration. There might also be 

better options for multi-class classification issues.  
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After running five folds of 250 epochs, the best HoVer-Trans model produced an AUC of  

0.813937. The evolution of the AUC can be viewed in Figure 6. 

Figure 6

HoVer-Trans AUC evolution 

F1 Score 

The model's accuracy was assessed using the F1 Score, a popular evaluation metric in 

classification tasks. It provides a balanced viewpoint on model performance by considering 

sensitivity and precision. Preciseness and sensitivity are its harmonic means. In contrast to 

sensitivity, which is the ratio of true positives to the sum of true positives and false negatives, 

precision is the ratio of true positives to the sum of true positives and false positives. F1 score is 

equal to 2 * (sensitivity * precision) / (precision + sensitivity).  

A classification model's performance can be comprehensively assessed thanks to the F1 

Score, which combines sensitivity and precision. The F1 Score considers both precision and 

sensitivity, making it easier to pinpoint the circumstances where a model can accurately detect 

positive instances (precision) and capture every positive instance (sensitivity). Achieving the 

maximum F1 Score for a given classification task denotes striking the ideal balance between 
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sensitivity and precision. It is beneficial in cases where the distribution of classes could be more 

balanced. 

After running five folds of 250 epochs, the best HoVer-Trans model produced an F1 

Score of  0.779861. Figure 7 shows the evolution of the F1 Score. 

Figure 7  

HoVer-Trans F1 Score evolution 

Accuracy 

One metric to assess classification models is accuracy. The percentage of predictions our 

model correctly predicted is known as accuracy. Accuracy for binary classification can be 

determined in terms of positives and negatives: Accuracy is equal to 𝑇𝑃+𝑇𝑁 / 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁. 

Ninety-one accurate predictions out of 100 total examples make up the accuracy of 0. 91 or 91 

percent. That implies that a tumor classifier performs admirably in detecting cancers, correct?  To 

get more insight into the performance of our model, let us examine the advantages and 

disadvantages in more detail. Ninety-one (one TP and eight FNs) and ninety-one (91 TNs and 

one FP) of the 100 tumor examples are malignant. The model correctly classifies 90 out of the 91 

benign tumors as benign. That seems beneficial. However, only one of the nine malignant tumors 
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is correctly identified by the model as malignant—a terrible result considering that eight of the 

nine malignancies remain undetected! Even though 91 percent accuracy might initially seem 

impressive in our examples, a different tumor-classifier model that consistently predicts benign 

would obtain the same accuracy (91/100 correct predictions). Put differently, the model 

possesses no greater predictive power than one that cannot differentiate between benign and 

malignant tumors. Working with a class-imbalanced data set such as this one, where the number 

of positive and negative labels differs significantly, means that accuracy alone does not provide 

the whole picture. 

After running five folds of 250 epochs, the best HoVer-Trans model produced an 

Accuracy of  0.753455. Figure 8 shows the accuracy's evolution. 

Figure 8

HoVer-Trans Accuracy evolution 

Sensitivity, Specificity, and Precision 

The appealing feature of sensitivity and specificity is that they are independent of class 

prevalence. That is, sensitivity represents accuracy among true positives, while specificity 

represents true negatives. These metrics treat the real positives and negatives differently, making 

their relative proportions meaningless. Sensitivity and specificity are attributes of a specific test 
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in the medical field determined by the test itself, regardless of the number of individuals 

undergoing it. This renders the test statistics independent of location and time. For example, a 

test administered to a population exhibiting a 90% prevalence of the ailment will possess 

identical levels of specificity and sensitivity when administered to a population with a 10% 

incidence. Contrarily, precision is dependent on class prevalence. It measures accuracy among 

predicted positives, but the number of individuals expected to be positive depends on the 

condition’s prevalence. One precision value will be obtained if the test is administered to a 

population where the condition is 90% prevalent. However, the accuracy will be significantly 

reduced when the same test is conducted on a population with a mere 10% incidence due to the 

substantially higher proportion of true negatives than true positives. The probability that a 

positive test is accurate (precision) decreases with the real positive population. While precision is 

a feature of the test in a particular population, it is applied to specificity, a feature of a test 

independent of the population it is used to. Specificity is often the favored way to characterize a 

medical test because condition prevalence can vary over time by subpopulation or geographic 

location. A fixed test’s specificity increases with decreasing condition prevalence but not 

precision. 

After running five folds of 250 epochs, the best HoVer-Trans model produced a 

Sensitivity of  0.782953. Figure 9 shows the evolution of the Sensitivity. 
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Figure 9

HoVer-Trans Sensitivity evolution 

After running five folds of 250 epochs, the best HoVer-Trans model produced a 

Specificity of  0.716250. Figure 10 shows the evolution of the Sensitivity. 

Figure 10

HoVer-Trans Specificity evolution 

After running five folds of 250 epochs, the best HoVer-Trans model produced a Precision 

of  0.776794. Figure 11 shows the evolution of the Precision. 
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Figure 11  

HoVer-Trans Precision evolution 

Findings 

Model Statistics 

In review, the model chosen for this project was the HoVer-Trans model developed by 

Mo et al. (2022). This model employed a unique approach by capitalizing on the anatomical 

distinctions between malignant and benign tumors. Unlike its predecessors, the HoVer-Trans 

model is unique because it is anatomically aware. The superiority of the HoVer-Trans model over 

traditional CNN architectures and the diagnostic capabilities of experienced radiologists were 

demonstrated, representing a significant leap forward in ultrasound-based breast cancer detection 

(Mo et al., 2022). This project aimed to illustrate improved model statistics compared to Jarvey 

(2022), who used ResNet-34 to evaluate images.  

The quantitative results and comparisons are presented in Table 1. The objective was to 

create a model using the HoVer-Trans methodology that outperformed current methods used on 

the Mayo data. The results from this study were compared to results obtained by Jarvey (2022), 

which included a ResNet-34 model and results from Mayo radiologists.  Elements of comparison 

include: 
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• Accuracy is the total number of correct predictions divided by the number of data 

points.  

• Sensitivity measures true positives, where one is the best, and 0 is the worst.  

• AUC, or area under the curve, measures how well the model distinguishes between 

positive and negative classes.  

• Precision measures the number of correct optimistic predictions divided by the 

number of positives, measured on a scale of 0 to 1.  

• The F1 score is a statistical value representing the harmonic mean of precision and 

sensitivity.  

The result of a study by Jarvey (2022) found that the radiologist had superior sensitivity 

(0.934595), a measure of the actual positive rate. However, when evaluating ultrasound images 

of breast lesions, there was a much lower AUC, meaning that the radiologist was not as good at 

distinguishing between malignant vs. benign tumors via ultrasound alone (Jarvey, 2022). The 

HoVer-Trans model outperformed the ResNet-34, and the radiologist's results in every element 

except sensitivity and specificity; the ResNet-34 model and the HoverTrans model were nearly 

equal.  

Table 1

HoVer-Trans Model Comparison with ResNet-34 and Radiologist Results (Jarvery, 2022) 

Model AUC F1 Score Accuracy Sensitivity Precision Specificity

Hover-Trans 0.813937 0.779861 0.753455 0.782953 0.776794 0.716250

ResNet-34 0.709624 0.743295 0.713675 0.788617 0.702898 0.729167

Radiologist 0.616128 0.727848 0.632478 0.934959 0.595854 0.804878
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Conclusion 

The HoVer-Trans model has significantly advanced breast cancer diagnostics by 

improving traditional convolutional neural network (CNN) architectures. Utilizing a dataset of 

9072 images from 1526 patients, the model demonstrated superior performance with an AUC of 

0.813937 and an F1 Score of 0.779861. These results surpass the previous studies at the Mayo 

Clinic and illustrate the potential for early detection and treatment of breast cancer, emphasizing 

the model's accuracy and reliability. 

While the model outperformed in most metrics, challenges in sensitivity and specificity 

indicate areas for future improvement. The research underscores the importance of AI in 

enhancing medical imaging and sets the stage for further developments that could integrate such 

models into clinical workflows. This study highlights the transformative impact of AI 

technologies like the HoVer-Trans model in pursuing precision medicine. 
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Chapter 5:  Discussion 

Introduction 

This study aimed to evaluate the effectiveness of the HoVer-Trans model proposed by Mo 

et al. (2022) on the Mayo Clinic's ultrasound image database, aiming to improve the 

interpretability and accuracy of breast cancer diagnosis. By providing a model that required 

minimal human intervention for accurate malignancy prediction, this research could 

significantly impact the field of computer-aided diagnosis (CAD). This chapter discusses the 

findings, limitations, and suggestions for further study. 

Summary of Findings 

The anatomically aware HoVer-Trans model was trained and tested using the Mayo 

Clinic data set, which included 9027 images of 1526 patients. Specifically, there were images of 

4537 right breasts and 4492 left breasts. The aim was to improve upon the results of prior 

models. The HoVer-Trans model achieved 81.3% AUC and outperformed both the ResNet-34 

model and a radiologist. The AUC represents how well the differences between malignant and 

benign lesions are distinguished, and the model could differentiate between the classes of 

lesions, either benign or malignant. The HoVer-Trans model also showed superior performance 

in accuracy (73.5%), sensitivity (78.3%), precision (77.7%), and the highest F1 score (.778). 

The HoverTrans model underperformed in terms of specificity (71.6%). Notable achievements 

of the model include the following: 

• Significantly higher accuracy in classifying benign and malignant breast lesions.  

• The reduction of reliance on manual ROIs minimizes human error and subjective 

diagnoses. 
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• Enhanced interpretability of imaging results can provide radiologists with better visual 

data to support their decision-making.  

Interpretation of Findings 

One of the study's objectives was to improve the results of Jarvey (2022), who compared 

the various models against a radiologist.  In this study, the HoVer-Trans Model was applied to a 

much more extensive database of images. Previously, Jarvey (2022) used a dataset of 328 fully 

integrated images. Currently, the Mayo dataset includes 9072 fully interpreted images, all used 

in this study. The study's results indicate that the HoVer-Trans model outperformed the 

ResNet-34 model in everything except specificity and the radiologist in everything except 

sensitivity. The ResNet-34 model had a specificity of 73% vs. the HoVer-Trans model of 72%. 

This difference is very minimal. However, it demonstrates that the ResNet-34 model was 

slightly better at identifying true negatives. The most exciting finding was that the radiologist 

study (Jarvey, 2022) vs. the HoVer-Trans model in this study had much greater sensitivity, 93%, 

and 78%, respectively. The HoVer-Trans model was the worst performer in this indicator. The 

ResNet-34 model demonstrated a sensitivity of 79%. This means that the radiologist was the 

best at identifying true positives.  

Another objective of this study was to develop an improved HoVer-Trans model that 

could accurately classify breast lesions as benign or malignant.  The measurement of correct 

classification is the AUC. The HoV-Trans model yielded an AUC of 81%. This is higher than 

the ResNet-34 model and the radiologist in Jarvey’s (2022) study. One possible explanation for 

the higher AUC is that the HoVer-Trans model is anatomically aware, and the ResNet-34 model 
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is not. In addition, the radiologist introduced human error, which could account for the lower 

results.  

The Hover-Trans model's goal of enhancing sensitivity and specificity in detecting 

malignancies was partially met. The ResNet-34 model showed better sensitivity and specificity, 

but very minimally.  

An unintended finding was the performance of the HoVer-Trans model in this study 

compared with the conclusions of Mo et al. (2022) using a HoVer-Trans model that they 

optimized. Using the GDPH&SYSUCC database, Mo et al. achieved an AUC of 92.4% (figure 

1). Using the same database with the HoVer-Trans model in this study, an AUC of 81.4% was 

achieved. It is unknown why there was underperformance at this time, but overfitting and tuning 

issues could be the source of the difference. These will be discussed in the limitations section of 

this report.  

The findings of this study contribute to the validation of introducing AI into radiologic 

diagnoses concerning breast ultrasounds. The HoVer-Trans model’s performance in correctly 

classifying breast lesions confirms the benefit of using an anatomy-aware model rather than one 

that is not. This capability is crucial as AI technology emerges as a standard in diagnostic 

medicine.  

Implications of Findings 

The results of this project support the assertions that machine learning and AI models can 

significantly enhance diagnostic processes. In particular, an anatomically aware model, such as 

the HoVer-Trans model, demonstrated a superior ability to distinguish between benign and 

malignant tumors.  
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From a methodological standpoint, the success of the HoVer-Trans model signals a shift 

from traditional CNN models to transformer models. The evidence gained from this study 

shows how a transformer model is the next logical step in AI and predictive analytics in 

diagnostic medicine.  

Practically, the application of AI models is beneficial in many ways. Reducing 

misdiagnoses improves patient safety. In addition, earlier and more precise detection capabilities 

will significantly enhance the timeliness of planning appropriate treatment and improve patient 

outcomes.  

Context of Findings 

This study's findings are similar to those of Mo et al. (2022). In Mo’s study, the HoVer-

Trans model outperformed all other models in AUC, specificity, precision, recall, and score.  It 

did not outperform the models in specificity. Similarly, the HoVer-Trans model in this current 

study had the worst specificity when compared to the ResNet-34 model and with a radiologist 

(Jarvey, 2022). In addition, both models had superior AUCs compared to others. 

Limitations 

This study's limitations include model fitting. The HoVer-Trans model showed signs of 

overfitting. This means the model needs to be generalized better to the validation data, and 

training can be improved. Figure 12 illustrates the issues with overfitting in this project. 



46

Figure 12  

Overfitting of Mayo Data 

Interestingly, Mo et al. (2022), who provided much of the framework for this study, also 

showed overfitting.  Figure 13 illustrates the issue of overfitting in their research. 

Figure 13  

Overfitting of GDPH&SYSUCC Data (Mo et al., 2022) 

Overfitting means the model produces accurate predictions on the training but not on the 

final data. This is an important finding because an overfit model can predict errors. Overfitting 

can occur because of noise in the data set, small sample sizes for the training data set, or if the 
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model is complex, it can learn noise in the training data. Data augmentation can help overcome 

the overfitting problem. Examples of data augmentation are as follows: Increase the diversity of 

the training data, such as adding rotations, translation, scaling, or noise to challenge the model. 

Next, reduce the complexity of the model. Sometimes, a complex model must be more 

significant for the available training data. 

Another limitation of the study was the condition of the images. The images varied in 

size, making it difficult for the model to identify structures accurately. Since the HoVer-Trans 

model is anatomy-aware, this was problematic.  

There were differences in data sets and study parameters between Jarvey (2022) and Mo 

et al. (2022), and this study included data sets, image types, and differences in model training. 

Therefore, results cannot be generalized across studies.  

Most importantly, the performance of the HoVer-Trans Model on Mayo Data was worse 

than expected compared to the performance on GDPH&SYSUCC data. Tuning methods to 

correct the overfitting and other restrictions should be pursued. 

Future Directions 

Several tuning procedures may benefit future research projects using the HoVer-Trans 

model. The issues with overfitting could be addressed in several ways. 

Tuning to Correct Overfitting 

Segmentation 

Using broader or alternative data augmentation approaches can increase the diversity of 

the training data. Consider rotations (when appropriate), scaling translation, or adding noise for a 
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model trained on images like the HoVer-Trans model. To guarantee precise predictions, ensure 

the augmentations do not change critical anatomical characteristics.  

Regularization 

Use regularization strategies like dropout L1 or L2 regularization or step up their use. 

Modify the dropout rate in each model layer to avoid putting too much emphasis on a particular 

neuron and encourage a more universal learning pattern.  

Model Simplification 

If the models’ complexity is greater than the quantity of training data available, lower it. 

This could involve reducing the number of layers or units per layer, which can reduce the 

model's capacity to memorize the training data.  

Early Termination 

Employing early stopping during training entails monitoring the model's performance on 

a validation set and pausing training when it starts to deteriorate or improve significantly. By 

doing this, the model is shielded from noise and training data specifics that are not transferable to 

new data, utilizing cross-validation. To assess the model’s performance more reliably, employ 

cross-validation methods. This entails training multiple models by dividing the training data into 

smaller sets. This method lessens the possibility of coincidental strong performance on a single 

test set and aids in understanding how the model functions across various data subsets.  

Add Additional Information 

Expanding the dataset size can be beneficial. With more data, the model can learn from a 

wider variety of examples, enhancing its capacity for generalization.  
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Modify the Learning Rate and Training Duration 

Changing the learning rate and training duration can also aid in the management of 

overfitting. A more robust model with better generalization can result from a lower learning rate, 

even though it may slow down the training process.  

Use of Batch Normalization 

Batch normalization, which serves as a regularization and can assist in reducing internal 

covariate shift, can reduce overfitting. It is recommended to repeatedly contemplate and test 

these strategies to determine the ideal configuration that minimizes overfitting and preserves or 

enhances the model's performance on the new dataset. 

Other Tuning Recommendations 

Several other tuning methods can be used to gain performance. The following are some 

recommendations. 

Recognize the Model Architecture 

The HoVer-Trans model borrows features from the Vision Transformer (ViT) 

architecture, adding mechanisms to allow the model to incorporate anatomical information from 

ultrasound images. The architecture combines horizontal and vertical strip embeddings to exploit 

spatial correlations between tissue layers.  

Preprocessing the Input 

Make sure the new dataset images are formatted correctly for the model. This may mean 

resizing the photos to 256 by 256 pixels and using suitable augmentation techniques that do not 

include vertical flips to preserve the integrity of the anatomical structure.  
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Change Hyperparameters 

Embedding parameters may need to be adjusted, such as the number of blocks and heads 

in each transformer stage and the training schedule, which includes learning rates and epochs 

based on the features of the new dataset and the model's performance during the first training 

cycles.  

Changes to Feature Extraction 

The original model uses three types of embeddings: patch, horizontal strip, and vertical 

strip. Depending on the details of the new dataset, experimenting with the sizes of these 

embeddings to determine the best setup for novel image types will help optimize the model.  

Transfer Learning and Fine-Tuning 

Retrain the model using the anatomy-aware formulation intended for ultrasound images. 

Depending on how similar the new dataset is to the original, this may entail retraining only the 

last few layers or the entire network.  

Integration of Anatomical Knowledge 

If the new dataset contains images with anatomical structures that differ from breast 

ultrasound images, it must modify or remodel the model's anatomy-aware components to capture 

pertinent spatial correlations.  

Evaluation and Iteration 

Measures such as accuracy sensitivity specificity and area under the ROC curve can be 

used to assess the performance of the optimized model. Considering that the model was initially 

intended to perform better than conventional models and even skilled sonographers, comparable 
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standards ought to be set for the new dataset, with objectives being modified in light of early 

findings.  

Visualization and Interpretability 

Use attention maps and other model interpretability features to assess the model's 

performance in identifying and diagnosing features in the new dataset. Pay close attention to the 

boundaries and properties of lesions or other anatomical features.  

Clinical Validation 

Please verify that the model satisfies all regulatory and validation requirements before 

implementing it in a clinical setting. Pay particular attention to the models’ accuracy and 

reliability compared to current diagnostic techniques. 

Conclusion 

This study aimed to apply the HoVer-Trans model to the Mayo Clinic breast ultrasound 

data to test the model results compared to Jarvey (2022) and Mo et al. (2022). The results 

showed that the HoVer-Trans model demonstrated greater AUC, which could correctly classify 

breast lesions as benign or malignant. However, it did not perform better in sensitivity than a 

radiologist, as shown in Jarvey’s (2022) results. Improved model optimization of the HoVer-

Trans model could produce more precise and accurate results than this study's results. Future 

research on AI in breast cancer diagnosis using machine learning and AI should include 

continuing refinement of anatomy-aware models in general tuning and tuning to avoid 

overfitting, especially as larger datasets become available. Early detection and rapid 

intervention for breast cancer is essential for patient care and optimal outcomes. Machine 

learning and AI can contribute significantly to diagnostic medicine in terms of breast cancer. 



52

The knowledge gained from studies using AI and machine learning in a specific cancer 

diagnosis can eventually be applied to other types of cancer, thereby improving patient care 

overall.  
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Appendix A 

Python Code 

https://drive.google.com/file/d/1DIV2_38YlED5wCWfCA52nWR_XqQpm-Tr/ 

Jupyter Notebook 

https://drive.google.com/file/d/1Cro9xuYADc88j1Sq_WomcOBAyFTE9jNG/ 

https://drive.google.com/file/d/1DIV2_38YlED5wCWfCA52nWR_XqQpm-Tr/
https://drive.google.com/file/d/1Cro9xuYADc88j1Sq_WomcOBAyFTE9jNG/
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